non-abelian, soluble, monomial
Aliases: C62.3D4, (C3×C6).4D8, D6⋊S3⋊4C4, C22.8S3≀C2, C3⋊Dic3.4D4, (C3×C6).4SD16, C2.1(C32⋊D8), C32⋊3(D4⋊C4), C62.C22⋊1C2, C2.1(C32⋊2SD16), C2.9(S32⋊C4), (C2×C32⋊2C8)⋊1C2, C3⋊Dic3.9(C2×C4), (C2×D6⋊S3).1C2, (C3×C6).9(C22⋊C4), (C2×C3⋊Dic3).1C22, SmallGroup(288,387)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊Dic3 — C62.3D4 |
C1 — C32 — C3×C6 — C3⋊Dic3 — C2×C3⋊Dic3 — C2×D6⋊S3 — C62.3D4 |
C32 — C3×C6 — C3⋊Dic3 — C62.3D4 |
Generators and relations for C62.3D4
G = < a,b,c,d | a6=b6=d2=1, c4=b3, ab=ba, cac-1=a3b4, dad=a-1, cbc-1=a2b3, bd=db, dcd=a3b3c3 >
Subgroups: 456 in 90 conjugacy classes, 19 normal (17 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C8, C2×C4, D4, C23, C32, Dic3, C12, D6, C2×C6, C4⋊C4, C2×C8, C2×D4, C3×S3, C3×C6, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, D4⋊C4, C3×Dic3, C3⋊Dic3, S3×C6, C62, Dic3⋊C4, C2×C3⋊D4, C32⋊2C8, D6⋊S3, D6⋊S3, C6×Dic3, C2×C3⋊Dic3, S3×C2×C6, C62.C22, C2×C32⋊2C8, C2×D6⋊S3, C62.3D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, D8, SD16, D4⋊C4, S3≀C2, S32⋊C4, C32⋊D8, C32⋊2SD16, C62.3D4
Character table of C62.3D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 12 | 12 | 4 | 4 | 12 | 12 | 18 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -i | i | -i | i | -i | -i | i | i | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | i | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | i | i | -i | -i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | i | -i | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | i | -i | i | -i | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ15 | 4 | 4 | 4 | 4 | 2 | 2 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | 4 | 4 | 4 | 0 | 0 | 1 | -2 | 2 | 2 | 0 | 0 | 1 | 1 | 1 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3≀C2 |
ρ17 | 4 | 4 | 4 | 4 | 0 | 0 | 1 | -2 | -2 | -2 | 0 | 0 | 1 | 1 | 1 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from S3≀C2 |
ρ18 | 4 | 4 | 4 | 4 | -2 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ19 | 4 | 4 | -4 | -4 | 2 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32⋊C4 |
ρ20 | 4 | 4 | -4 | -4 | -2 | 2 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32⋊C4 |
ρ21 | 4 | -4 | -4 | 4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√3 | √3 | -√3 | √3 | symplectic lifted from C32⋊2SD16, Schur index 2 |
ρ22 | 4 | -4 | -4 | 4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √3 | -√3 | √3 | -√3 | symplectic lifted from C32⋊2SD16, Schur index 2 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -1 | -1 | 1 | √-3 | -√-3 | -√-3 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊D8 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 1 | -1 | -1 | -√-3 | √-3 | -√-3 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2SD16 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-3 | √-3 | √-3 | -√-3 | complex lifted from C32⋊D8 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 1 | -1 | -1 | √-3 | -√-3 | √-3 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2SD16 |
ρ27 | 4 | 4 | -4 | -4 | 0 | 0 | 1 | -2 | -2i | 2i | 0 | 0 | -1 | -1 | 1 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | -i | i | i | complex lifted from S32⋊C4 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 1 | -2 | 2i | -2i | 0 | 0 | -1 | -1 | 1 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | i | -i | -i | complex lifted from S32⋊C4 |
ρ29 | 4 | -4 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-3 | -√-3 | -√-3 | √-3 | complex lifted from C32⋊D8 |
ρ30 | 4 | -4 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -1 | -1 | 1 | -√-3 | √-3 | √-3 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊D8 |
(1 28 18 35 14 41)(2 36)(3 43 16 37 20 30)(4 38)(5 32 22 39 10 45)(6 40)(7 47 12 33 24 26)(8 34)(9 31)(11 25)(13 27)(15 29)(17 48)(19 42)(21 44)(23 46)
(1 5)(2 23 15 6 19 11)(3 7)(4 13 21 8 9 17)(10 14)(12 16)(18 22)(20 24)(25 36 46 29 40 42)(26 30)(27 44 34 31 48 38)(28 32)(33 37)(35 39)(41 45)(43 47)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 34)(3 7)(4 40)(6 38)(8 36)(9 46)(10 22)(11 44)(12 20)(13 42)(14 18)(15 48)(16 24)(17 29)(19 27)(21 25)(23 31)(26 43)(28 41)(30 47)(32 45)(33 37)
G:=sub<Sym(48)| (1,28,18,35,14,41)(2,36)(3,43,16,37,20,30)(4,38)(5,32,22,39,10,45)(6,40)(7,47,12,33,24,26)(8,34)(9,31)(11,25)(13,27)(15,29)(17,48)(19,42)(21,44)(23,46), (1,5)(2,23,15,6,19,11)(3,7)(4,13,21,8,9,17)(10,14)(12,16)(18,22)(20,24)(25,36,46,29,40,42)(26,30)(27,44,34,31,48,38)(28,32)(33,37)(35,39)(41,45)(43,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,34)(3,7)(4,40)(6,38)(8,36)(9,46)(10,22)(11,44)(12,20)(13,42)(14,18)(15,48)(16,24)(17,29)(19,27)(21,25)(23,31)(26,43)(28,41)(30,47)(32,45)(33,37)>;
G:=Group( (1,28,18,35,14,41)(2,36)(3,43,16,37,20,30)(4,38)(5,32,22,39,10,45)(6,40)(7,47,12,33,24,26)(8,34)(9,31)(11,25)(13,27)(15,29)(17,48)(19,42)(21,44)(23,46), (1,5)(2,23,15,6,19,11)(3,7)(4,13,21,8,9,17)(10,14)(12,16)(18,22)(20,24)(25,36,46,29,40,42)(26,30)(27,44,34,31,48,38)(28,32)(33,37)(35,39)(41,45)(43,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,34)(3,7)(4,40)(6,38)(8,36)(9,46)(10,22)(11,44)(12,20)(13,42)(14,18)(15,48)(16,24)(17,29)(19,27)(21,25)(23,31)(26,43)(28,41)(30,47)(32,45)(33,37) );
G=PermutationGroup([[(1,28,18,35,14,41),(2,36),(3,43,16,37,20,30),(4,38),(5,32,22,39,10,45),(6,40),(7,47,12,33,24,26),(8,34),(9,31),(11,25),(13,27),(15,29),(17,48),(19,42),(21,44),(23,46)], [(1,5),(2,23,15,6,19,11),(3,7),(4,13,21,8,9,17),(10,14),(12,16),(18,22),(20,24),(25,36,46,29,40,42),(26,30),(27,44,34,31,48,38),(28,32),(33,37),(35,39),(41,45),(43,47)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,34),(3,7),(4,40),(6,38),(8,36),(9,46),(10,22),(11,44),(12,20),(13,42),(14,18),(15,48),(16,24),(17,29),(19,27),(21,25),(23,31),(26,43),(28,41),(30,47),(32,45),(33,37)]])
Matrix representation of C62.3D4 ►in GL6(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 0 | 0 | 1 | 0 |
67 | 6 | 0 | 0 | 0 | 0 |
67 | 67 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0],[67,67,0,0,0,0,6,67,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,1,0,0,72,0,0,0,0,0,0,72,0,0],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72] >;
C62.3D4 in GAP, Magma, Sage, TeX
C_6^2._3D_4
% in TeX
G:=Group("C6^2.3D4");
// GroupNames label
G:=SmallGroup(288,387);
// by ID
G=gap.SmallGroup(288,387);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,85,64,422,219,100,2693,2028,691,797,2372]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=d^2=1,c^4=b^3,a*b=b*a,c*a*c^-1=a^3*b^4,d*a*d=a^-1,c*b*c^-1=a^2*b^3,b*d=d*b,d*c*d=a^3*b^3*c^3>;
// generators/relations
Export